2006 年度 数値解析 レポート課題その 2

2006年12月28日

問 1

$$I = \int_0^1 \sqrt{x+1} dx = \int_{-1}^1 \frac{\sqrt{2}}{4} \sqrt{y+3} dy = \frac{4\sqrt{2}-2}{3} = 1.2189514 \cdots$$

(1)

DE 公式を用いて複合台形則によって、積分値 I の近似値 Th を計算した。(積分区間は [-3.3,3.3]) その結果を表 1 に示す。刻み幅 $h=h_0=3.3/2$ のとき、真値との差 |Th-I| は 0.3810052 である。

表 1 DE 公式による数値計算の結果

	h	Th	Th - I
h_0	1.65	1.5999566	0.3810052
$\frac{h_0}{2}$	0.825	1.2234389	0.0044875
$\frac{h_0}{2^2}$	0.4125	1.2189517	0.0000002
$\frac{h_0}{2^3}$	0.20625	1.2189514	2.220D-16
$\frac{h_0}{2^4}$	0.103125	1.2189514	0

(2)

真値との差 |Th-I| は h について、0.3810052, 0.0044875, 0.00000002, 2.220D-16,... と多項式的にではなく、指数的に減少している。(DE 公式を用いたため収束が速くなったと考えられる。)

問 2

$$f(x) = \sqrt{x+1}, \quad f'(1) = \frac{\sqrt{2}}{4}$$

$$M_h = \frac{f(1+h) - f(1-h)}{2h}$$

(1)

Taylor 展開より

$$f(1+h) = f(1) + f'(1)h + \frac{f''(1)}{2!}h^2 + \frac{f'''(1)}{3!}h^3 + \frac{f^{(4)}(1)}{4!}h^4 + \frac{f^{(5)}(1)}{5!}h^5 + O(h^6)$$

$$f(1-h) = f(1) - f'(1)h + \frac{f''(1)}{2!}h^2 - \frac{f'''(1)}{3!}h^3 + \frac{f^{(4)}(1)}{4!}h^4 - \frac{f^{(5)}(1)}{5!}h^5 + O(h^6)$$

したがって

$$\begin{split} M_h &= \frac{f(1+h) - f(1-h)}{2h} \\ &= \frac{1}{2h} \left\{ 2f'(1)h + 2\frac{f'''(1)}{3!}h^3 + 2\frac{f^{(5)}(1)}{5!}h^5 + O(h^7) \right\} \\ &= f'(1) + \frac{f'''(1)}{3!}h^2 + \frac{f^{(5)}(1)}{5!}h^4 + O(h^6) \\ &= f'(1) + \frac{1}{2^6\sqrt{2}}h^2 + \frac{7}{2^{12}\sqrt{2}}h^4 + O(h^6) \\ &= f'(1) + \alpha h^2 + \beta h^4 + O(h^6) \end{split}$$

(ただし、 $\alpha=\frac{1}{2^6\sqrt{2}}, \beta=\frac{7}{2^{12}\sqrt{2}})$ 故に

$$M_h - f'(1) = \alpha h^2 + \beta h^4 + O(h^6)$$

(2)

 M_h の計算結果は表 2 に示してある。

またR(h)として、

$$R(h) \equiv \frac{M_h - M_{\frac{h}{2}}}{M_{\frac{h}{2}} - M_{\frac{h}{2^2}}}$$

表 2 中心差分近似による数値計算の結果

	h	M_h
h_0	0.1	0.353664
$\frac{h_0}{2}$	0.05	0.3535810
$\frac{h_0}{2^2}$	0.025	0.3535603
$\frac{h_0}{2^3}$	0.0125	0.3535551
$\frac{h_0}{2^4}$	0.00625	0.3535538
$\frac{h_0}{2^5}$	0.003125	0.3535535

とすると、(1) の結果より、h が十分小さければ

$$R(h) = \left\{ \frac{3}{4}\alpha h^2 + O(h^4) \right\} / \left\{ \frac{3}{4 \cdot 4}\alpha h^2 + O(h^4) \right\}$$

\$\sim 4\$

そして、実際

$$R(h_0) = 4.0041081$$

$$R\left(\frac{h_0}{2}\right) = 4.0010258$$

$$R\left(\frac{h_0}{2^2}\right) = 4.0002564$$

$$R\left(\frac{h_0}{2^3}\right) = 4.0000637$$

R(h) の値は約4である。

(3)

(1) より

$$M_h - f'(1) = \alpha h^2 + \beta h^4 + O(h^6)$$

であるから、 $4M_{rac{h}{2}}-M_h$ を考えれば

$$4M_{\frac{h}{2}} - M_h = 4\left\{f'(1) + \alpha\left(\frac{h}{2}\right)^2 + \beta\left(\frac{h}{2}\right)^4 + O(h^6)\right\} - \left\{f'(1) + \alpha h^2 + \beta h^4 + O(h^6)\right\}$$
$$= 3f'(1) - \frac{3}{4}\beta h^4 + O(h^6)$$
$$\frac{4M_{\frac{h}{2}} - M_h}{3} = f'(1) - \frac{\beta}{4}h^4 + O(h^6)$$

したがって

$$M_h^{(1)} \equiv \frac{4M_{\frac{h}{2}} - M_h}{3} = f'(1) - \frac{\beta}{4}h^4 + O(h^6)$$

とすればよく。このとき $M_h^{(1)} = f'(1) + O(h^4)$ である。

(4)

(3) より、 $M_h^{(1)}=rac{4M_h-M_h}{2}$ として、各 $M_h^{(1)}$ を計算する。その結果を表 3 に示した。

表 3 Richardson 加速を行った $M_h^{(1)}$

	h	$M_h^{(1)}$
$\frac{h_0}{2}$	0.05	0.3535534
$\frac{h_0}{2^2}$	0.025	0.3535534
$\frac{h_0}{2^3}$	0.0125	0.3535534
$\frac{h_0}{2^4}$	0.00625	0.3535534

また $R^{(1)}(h)$ として、

$$R^{(1)}(h) \equiv \frac{M_h^{(1)} - M_{\frac{h}{2}}^{(1)}}{M_{\frac{h}{2}}^{(1)} - M_{\frac{h}{2}}^{(1)}}$$

とすると

$$R^{(1)}(h_0) = 16.023235$$

$$R^{(1)}\left(\frac{h_0}{2}\right) = 16.002108$$

$$R^{(1)}\left(\frac{h_0}{2^2}\right) = 16.113195$$

ところで、 $M_h^{(1)} = rac{4M_h^{-M_h}}{3}$ であるから

$$M_h^{(1)} - M_{\frac{h}{2}}^{(1)} = -\frac{\beta}{4}h^4 + \frac{\beta}{4}\left(\frac{h}{2}\right)^4 + O(h^6)$$
$$= \frac{15}{64}\beta h^4 + O(h^6)$$

よって

$$R^{(1)}(h) = \frac{\frac{15}{64}\beta h^4 + O(h^6)}{\frac{15}{64}\beta \left(\frac{h}{2}\right)^4 + O(h^6)}$$

表 4 推定誤差と実際の誤差

	h	推定誤差	実際の誤差	2 つの誤差の差
$\frac{h_0}{2^2}$	0.025	1.892D-09	1.889D-09	2.788D-12
$\frac{h_0}{2^3}$	0.0125	1.181D-10	1.180D-10	4.495D-14
$\frac{h_0}{2^4}$	0.00625	7.378D-12	7.349D-12	2.940D-14
$\frac{h_0}{2^5}$	0.003125	4.579D-13	4.803D-13	2.243D-14

$$\simeq \frac{h^4}{\left(\frac{h}{2}\right)^4}$$
$$= 16$$

となる。よって h が十分小さい場合は $R^{(1)}(h) \simeq 16$ 。これは計算結果と比べるとほぼ等しい値となっている。(上で $R^{(1)}(h)$ が単調に減少していないのは丸め誤差の影響だろう。)

(5)

(3) より

$$\begin{split} M_h^{(1)} - M_{\frac{h}{2}}^{(1)} &= \{M_h^{(1)} - f'(1)\} - \{M_{\frac{h}{2}}^{(1)} - f'(1)\} \\ &\simeq 16\{M_{\frac{h}{2}}^{(1)} - f'(1)\} - \{M_{\frac{h}{2}}^{(1)} - f'(1)\} \\ &= 15\{M_{\frac{h}{2}}^{(1)} - f'(1)\} \end{split}$$

したがって、推定誤差は

$$M_{\frac{h}{2}}^{(1)} - f'(1) \simeq \frac{1}{15} \{ M_h^{(1)} - M_{\frac{h}{2}}^{(1)} \}$$

これより、推定誤差が計算できる。推定誤差と実際の誤差を計算したものが表 4 である。そして、表 4 より分かるが、 2 つの誤差の差は小さい。(h_0 は 10 の-2 乗のオーダーであるが、誤差の差は 10 の-12 乗のオーダーである。)

問3

$$\frac{dy}{dx} = -3xy, \ y(0) = 1, \ (0 \le x \le 1)$$

(1)

問題の微分方程式を初めの刻み幅 $h_0=1/2$ とし x=1 での数値解を、古典的 Runge-Kutta 法を用いて計算した。表 5 はその結果である。また、解析解 $y(1)=e^{-\frac{3}{2}}=0.2231302...$ との差 $E_h=|R_h-e^{-\frac{3}{2}}|$ もあわせて表 5 に示した。

表 5 R_h の計算結果

	h	R_h	E_h
h_0	0.5	0.2264388	0.0033086
$\frac{h_0}{2}$	0.25	0.2234825	0.0003533
$\frac{h_0}{2^2}$	0.125	0.2231512	0.0000210
$\frac{h_0}{2^3}$	0.0625	0.2231314	0.0000012
$\frac{h_0}{2^4}$	0.03125	0.2231302	7.470D-08
$\frac{h_0}{2^5}$	0.015625	0.2231302	4.580D-09
$\frac{h_0}{2^6}$	0.0078125	0.2231302	2.834D-10

(2)

古典的 Runge-Kutta 法は 4 次の公式なので、 γ をある定数として

$$R_h = y(1) + \gamma h^4 + O(h^5)$$

と表せる、よって

$$R_h - R_{\frac{h}{2}} = \frac{3}{4}\gamma h^4 + O(h^5)$$

なので、h が十分小さいとき

$$\frac{R_h - R_{\frac{h}{2}}}{R_{\frac{h}{2}} - R_{\frac{h}{2^2}}} \simeq \frac{\frac{3}{4}\gamma h^4}{\frac{3}{4}\gamma \left(\frac{h}{2}\right)^4} = 16$$

実際

$$L_h = \frac{R_h - R_{\frac{h}{2}}}{R_{\frac{h}{2}} - R_{\frac{h}{2^2}}}$$

として、 L_{h_0} を計算すると、 $L_{h_0}=8.8940288...$ となる。16 と比べると、オーダーは同じだが、予想通りの結果とは言えない。しかし、次に見るように h の値が小さければ L_h は 16 とほぼ等しくなる。

(3)

 $\frac{h_0}{2}, \frac{h_0}{2^3}, \dots$ について L_h を計算した。その結果を表 6 に示した。その表より h が小さくなると L_h の値は 16 に近づいていることが分かる。

表 6 L_h の計算結果

	h	L_h
h_0	0.5	8.8940288
$\frac{h_0}{2}$	0.25	16.792436
$\frac{h_0}{2^2}$	0.125	16.998869
$\frac{h_0}{2^3}$	0.0625	16.601151
$\frac{h_0}{2^4}$	0.03125	16.320938